Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 10: Issue 10: AAAI-20 Student Tracks
Track:
Student Abstract Track
Downloads:
Abstract:
Most feature selection methods only perform well on datasets with relatively small set of features. In the case of large feature sets and small number of data points, almost none of the existing feature selection methods help in achieving high accuracy. This paper proposes a novel approach to optimize the feature selection process through Frequent Pattern Growth algorithm to find sets of features that appear frequently among the top features selected by the main feature selection methods. Our experimental evaluation on two datasets containing a small and very large number of features shows that our approach significantly improves the accuracy results of the dataset with a very large number of features.
DOI:
10.1609/aaai.v34i10.7155
AAAI
Vol. 34 No. 10: Issue 10: AAAI-20 Student Tracks
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved