Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 10: Issue 10: AAAI-20 Student Tracks
Track:
Student Abstract Track
Downloads:
Abstract:
One essential characteristic of dynamic multi-objective optimization problems is that Pareto-Optimal Front/Set (POF/POS) varies over time. Tracking the time-dependent POF/POS is a challenging problem. Since continuous environments are usually highly correlated, past information is critical for the next optimization process. In this paper, we integrate CORAL methodology into a dynamic multi-objective evolutionary algorithm, named CORAL-DMOEA. This approach employs CORAL to construct a transfer model which transfer past well-performed solutions to form an initial population for the next optimization process. Experimental results demonstrate that CORAL-DMOEA can effectively improve the quality of solutions and accelerate the evolution process.
DOI:
10.1609/aaai.v34i10.7154
AAAI
Vol. 34 No. 10: Issue 10: AAAI-20 Student Tracks
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved