Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 10: Issue 10: AAAI-20 Student Tracks
Track:
Doctoral Consortium Track
Downloads:
Abstract:
My thesis research incorporates high-level abstract behavioral requirements, called ‘conceptual constraints’, into the modeling processes of robot Learning from Demonstration (LfD) techniques. My most recent work introduces an LfD algorithm called Concept Constrained Learning from Demonstration. This algorithm encodes motion planning constraints as temporal Boolean operators that enforce high-level constraints over portions of the robot's motion plan during learned skill execution. This results in more easily trained, more robust, and safer learned skills. Future work will incorporate conceptual constraints into human-aware motion planning algorithms. Additionally, my research will investigate how these concept constrained algorithms and models are best incorporated into effective interfaces for end-users.
DOI:
10.1609/aaai.v34i10.7136
AAAI
Vol. 34 No. 10: Issue 10: AAAI-20 Student Tracks
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved