Abstract:
A multivariate time-series forecasting has great potentials in various domains. However, it is challenging to find dependency structure among the time-series variables and appropriate time-lags for each variable, which change dynamically over time. In this study, I suggest partial correlation-based attention mechanism which overcomes the shortcomings of existing pair-wise comparisons-based attention mechanisms. Moreover, I propose data-driven series-wise multi-resolution convolutional layers to represent the input time-series data for domain agnostic learning.

Published Date: 2020-06-02
Registration: ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Copyright: Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved
DOI:
10.1609/aaai.v34i10.7132