Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 09: Issue 9: EAAI-20 / AAAI Special Programs
Track:
Demonstration Track
Downloads:
Abstract:
Most problems from classical machine learning can be cast as an optimization problem. We introduce GENO (GENeric Optimization), a framework that lets the user specify a constrained or unconstrained optimization problem in an easy-to-read modeling language. GENO then generates a solver, i.e., Python code, that can solve this class of optimization problems. The generated solver is usually as fast as hand-written, problem-specific, and well-engineered solvers. Often the solvers generated by GENO are faster by a large margin compared to recently developed solvers that are tailored to a specific problem class.An online interface to our framework can be found at http://www.geno-project.org.
DOI:
10.1609/aaai.v34i09.7097
AAAI
Vol. 34 No. 09: Issue 9: EAAI-20 / AAAI Special Programs
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved