Abstract:
To improve robustness to significant mismatches between source domain and target domain - arising from changes such as illumination, pose and image quality - domain adaptation is increasingly popular in computer vision. But most of methods assume that the source data is from single domain, or that multi-domain datasets provide the domain label for training instances. In practice, most datasets are mixtures of multiple latent domains, and difficult to manually provide the domain label of each data point. In this paper, we propose a model that automatically discovers latent domains in visual datasets. We first assume the visual images are sampled from multiple manifolds, each of which represents different domain, and which are represented by different subspaces. Using the neighborhood structure estimated from images belonging to the same category, we approximate the local linear invariant subspace for each image based on its local structure, eliminating the category-specific elements of the feature. Based on the effectiveness of this representation, we then propose a squared-loss mutual information based clustering model with category distribution prior in each domain to infer the domain assignment for images. In experiment, we test our approach on two common image datasets, the results show that our method outperforms the existing state-of-the-art methods, and also show the superiority of multiple latent domain discovery.
DOI:
10.1609/aaai.v28i1.9136