Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 08: AAAI-20 / IAAI-20 Technical Tracks
Track:
IAAI Technical Track: Emerging Papers
Downloads:
Abstract:
Food waste and food insecurity are two challenges that coexist in many communities. To mitigate the problem, food rescue platforms match excess food with the communities in need, and leverage external volunteers to transport the food. However, the external volunteers bring significant uncertainty to the food rescue operation. We work with a large food rescue organization to predict the uncertainty and furthermore to find ways to reduce the human dispatcher's workload and the redundant notifications sent to volunteers. We make two main contributions. (1) We train a stacking model which predicts whether a rescue will be claimed with high precision and AUC. This model can help the dispatcher better plan for backup options and alleviate their uncertainty. (2) We develop a data-driven optimization algorithm to compute the optimal intervention and notification scheme. The algorithm uses a novel counterfactual data generation approach and the branch and bound framework. Our result reduces the number of notifications and interventions required in the food rescue operation. We are working with the organization to deploy our results in the near future.
DOI:
10.1609/aaai.v34i08.7051
AAAI
Vol. 34 No. 08: AAAI-20 / IAAI-20 Technical Tracks
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved