Proceedings:
No. 15: AAAI-21 Technical Tracks 15
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 35
Track:
AAAI Technical Track on Speech and Natural Language Processing II
Downloads:
Abstract:
Text coherence plays a key role in document quality assessment. Most existing text coherence methods only focus on similarity of adjacent sentences. However, local coherence exists in sentences with broader contexts and diverse rhetoric relations, rather than just adjacent sentences similarity. Besides, the highlevel text coherence is also an important aspect of document quality. To this end, we propose a hierarchical coherence model for document quality assessment. In our model, we implement a local attention mechanism to capture the location semantics, bilinear tensor layer for measure coherence and max-coherence pooling for acquiring high-level coherence. We evaluate the proposed method on two realistic tasks: news quality judgement and automated essay scoring. Experimental results demonstrate the validity and superiority of our work.
DOI:
10.1609/aaai.v35i15.17576
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 35