Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 08: AAAI-20 / IAAI-20 Technical Tracks
Track:
IAAI Technical Track: Deployed Papers
Downloads:
Abstract:
In collaboration with Frontec, which produces parts such as bolts and nuts for the automobile industry, Kyung Hee University and Benple Inc. develop and deploy AI system for automatic quality inspection of weld nuts. Various constraints to consider exist in adopting AI for the factory, such as response time and limited computing resources available. Our convolutional neural network (CNN) system using large-scale images must classify weld nuts within 0.2 seconds with accuracy over 95%. We designed Circular Hough Transform based preprocessing and an adjusted VGG (Visual Geometry Group) model. The system showed accuracy over 99% and response time of about 0.14 sec. We use TCP / IP protocol to communicate the embedded classification system with an existing vision inspector using LabVIEW. We suggest ways to develop and embed a deep learning framework in an existing manufacturing environment without a hardware change.
DOI:
10.1609/aaai.v34i08.7020
AAAI
Vol. 34 No. 08: AAAI-20 / IAAI-20 Technical Tracks
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved