Proceedings:
No. 11: IAAI-22, EAAI-22, AAAI-22 Special Programs and Special Track, Student Papers and Demonstrations
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 36
Track:
AAAI Student Abstract and Poster Program
Downloads:
Abstract:
Sampling of chordal graphs and various types of acyclic orientations over chordal graphs plays a central role in several AI applications such as causal structure learning. For a given undirected graph, an acyclic orientation is an assignment of directions to all of its edges which makes the resulting directed graph cycle-free. Sampling is often closely related to the corresponding counting problem. Counting of acyclic orientations of a given chordal graph can be done in polynomial time, but the previously known techniques do not seem to lead to a corresponding (efficient) sampler. In this work, we propose a dynamic programming framework which yields a counter and a uniform sampler, both of which run in (essentially) linear time. An interesting feature of our sampler is that it is a stand-alone algorithm that, unlike other DP-based samplers, does not need any preprocessing which determines the corresponding counts.
DOI:
10.1609/aaai.v36i11.21667
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 36