Proceedings:
No. 11: IAAI-22, EAAI-22, AAAI-22 Special Programs and Special Track, Student Papers and Demonstrations
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 36
Track:
AAAI Student Abstract and Poster Program
Downloads:
Abstract:
Aside the high performance of graph neural networks (GNNs), considerable attention has recently been paid to explanations of black-box deep learning models. Unlike most studies focusing on model explanations based on a specific graph instance, we propose Prototype-bAsed GNN-Explainer (PAGE), a novel model-level explanation method for graph-level classification that explains what the underlying model has learned by providing human-interpretable prototypes. Specifically, our method performs clustering on the embedding space of the underlying GNN model; extracts embeddings in each cluster; and discovers prototypes, which serve as model explanations, by estimating the maximum common subgraph (MCS) from the extracted embeddings. Experimental evaluation demonstrates that PAGE not only provides high-quality explanations but also outperforms the state-of-the-art model-level method in terms of consistency and faithfulness that are performance metrics for quantitative evaluations.
DOI:
10.1609/aaai.v36i11.21660
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 36