Proceedings:
No. 11: IAAI-22, EAAI-22, AAAI-22 Special Programs and Special Track, Student Papers and Demonstrations
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 36
Track:
AAAI Student Abstract and Poster Program
Downloads:
Abstract:
In this work we propose a scheme, called XDC, that uses adversarial learning to train an adaptive cross domain clustering model. XDC trains a classifier on a labeled dataset and assigns labels to an unlabeled dataset. We benefit from adversarial learning such that the target dataset takes part in the training. We also use an existing image classifiers in a plug-and-play fashion (i.e, it can be replaced with any other image classifier). Unlike existing works we update the parameters of the encoder and expose the target dataset to the model during training. We apply our model on two face dataset and one non-face dataset and obtain comparable results with state-of-the-art face clustering models.
DOI:
10.1609/aaai.v36i11.21654
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 36