Proceedings:
No. 11: IAAI-22, EAAI-22, AAAI-22 Special Programs and Special Track, Student Papers and Demonstrations
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 36
Track:
AAAI Student Abstract and Poster Program
Downloads:
Abstract:
Psychological concepts can help computational linguists to better model the latent semantic spaces of emotions, and understand the underlying states motivating the sharing or suppressing of emotions. This abstract applies the understanding of agency and social interaction in the happiness semantic space to its role in positive emotion. First, BERT-based fine-tuning yields an expanded seed set to understand the vocabulary of the latent space. Next, results benchmarked against many emotion datasets suggest that the approach is valid, robust, offers an improvement over direct prediction, and is useful for downstream predictive tasks related to psychological states.
DOI:
10.1609/aaai.v36i11.21640
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 36