DOI:
10.1609/aaai.v36i11.21633
Abstract:
Existing studies on salient object detection (SOD) focus on extracting distinct objects with edge features and aggregating multi-level features to improve SOD performance. However, both performance gain and computational efficiency cannot be achieved, which has motivated us to study the inefficiencies in existing encoder-decoder structures to avoid this trade-off. We propose TRACER which excludes multi-decoder structures and minimizes the learning parameters usage by employing attention guided tracing modules (ATMs), as shown in Fig. 1.