Proceedings:
No. 11: IAAI-22, EAAI-22, AAAI-22 Special Programs and Special Track, Student Papers and Demonstrations
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 36
Track:
AAAI Student Abstract and Poster Program
Downloads:
Abstract:
Relational Graph Convolutional Networks (RGCNs) are commonly used on Knowledge Graphs (KGs) to perform black box link prediction. Several algorithms have been proposed to explain their predictions. Evaluating performance of explanation methods for link prediction is difficult without ground truth explanations. Furthermore, there can be multiple explanations for a given prediction in a KG. No dataset exists where observations have multiple ground truth explanations to compare against. Additionally, no standard scoring metrics exist to compare predicted explanations against multiple ground truth explanations. We propose and evaluate a method, including a dataset, to benchmark explanation methods on the task of explainable link prediction using RGCNs.
DOI:
10.1609/aaai.v36i11.21618
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 36