Proceedings:
No. 11: IAAI-22, EAAI-22, AAAI-22 Special Programs and Special Track, Student Papers and Demonstrations
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 36
Track:
AAAI Student Abstract and Poster Program
Downloads:
Abstract:
Existing scene graph generation methods suffer the limitations when the image lacks of sufficient visual contexts. To address this limitation, we propose a knowledge-enhanced scene graph generation model with multimodal relation alignment, which supplements the missing visual contexts by well-aligned textual knowledge. First, we represent the textual information into contextualized knowledge which is guided by the visual objects to enhance the contexts. Furthermore, we align the multimodal relation triplets by co-attention module for better semantics fusion. The experimental results show the effectiveness of our method.
DOI:
10.1609/aaai.v36i11.21610
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 36