Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 07: AAAI-20 Technical Tracks 7
Track:
AAAI Technical Track: Vision
Downloads:
Abstract:
We present an unsupervised approach for factorizing object appearance into highlight, shading, and albedo layers, trained by multi-view real images. To do so, we construct a multi-view dataset by collecting numerous customer product photos online, which exhibit large illumination variations that make them suitable for training of reflectance separation and can facilitate object-level decomposition. The main contribution of our approach is a proposed image representation based on local color distributions that allows training to be insensitive to the local misalignments of multi-view images. In addition, we present a new guidance cue for unsupervised training that exploits synergy between highlight separation and intrinsic image decomposition. Over a broad range of objects, our technique is shown to yield state-of-the-art results for both of these tasks.
DOI:
10.1609/aaai.v34i07.6961
AAAI
Vol. 34 No. 07: AAAI-20 Technical Tracks 7
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved