Proceedings:
No. 11: IAAI-22, EAAI-22, AAAI-22 Special Programs and Special Track, Student Papers and Demonstrations
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 36
Track:
IAAI Technical Track on Highly Innovative Applications of AI
Downloads:
Abstract:
We present a machine-learning-guided process that can efficiently extract factor tables from unstructured rate filing documents. Our approach combines multiple deep-learning-based models that work in tandem to create structured representations of tabular data present in unstructured documents such as pdf files. This process combines CNN's to detect tables, language-based models to extract table metadata and conventional computer vision techniques to improve the accuracy of tabular data on the machine-learning side. The extracted tabular data is validated through an intuitive user interface. This process, which we call Harvest, significantly reduces the time needed to extract tabular information from PDF files, enabling analysis of such data at a speed and scale that was previously unattainable.
DOI:
10.1609/aaai.v36i11.21507
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 36