Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
AAAI Technical Track: Vision
Downloads:
Abstract:
Region based detectors like Faster R-CNN and R-FCN have achieved leading performance on object detection benchmarks. However, in Faster R-CNN, RoI pooling is used to extract feature of each region, which might harm the classification as the RoI pooling loses spatial resolution. Also it gets slow when a large number of proposals are utilized. R-FCN is a fully convolutional structure that uses a position-sensitive pooling layer to extract prediction score of each region, which speeds up network by sharing computation of RoIs and prevents the feature map from losing information in RoI-pooling. But R-FCN can not benefit from fully connected layer (or global average pooling), which enables Faster R-CNN to utilize global context information. In this paper, we propose R-FCN++ to address this issue in two-fold: first we involve Global Context Module to improve the classification score maps by adopting large, separable convolutional kernels. Second we introduce a new pooling method to better extract scores from the score maps, by using row-wise or column-wise max pooling. Our approach achieves state-of-the-art single-model results on both Pascal VOC and MS COCO object detection benchmarks, 87.3% on Pascal VOC 2012 test dataset and 42.3% on COCO 2015 test-dev dataset. Code will be made publicly available.
DOI:
10.1609/aaai.v32i1.12265
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.