Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
AAAI Technical Track: Vision
Downloads:
Abstract:
Inspired by the free-energy brain theory, which implies that human visual system (HVS) tends to reduce uncertainty and restore perceptual details upon seeing a distorted image, we propose restorative adversarial net (RAN), a GAN-based model for no-reference image quality assessment (NR-IQA). RAN, which mimics the process of HVS, consists of three components: a restorator, a discriminator and an evaluator. The restorator restores and reconstructs input distorted image patches, while the discriminator distinguishes the reconstructed patches from the pristine distortion-free patches. After restoration, we observe that the perceptual distance between the restored and the distorted patches is monotonic with respect to the distortion level. We further define Gain of Restoration (GoR) based on this phenomenon. The evaluator predicts perceptual score by extracting feature representations from the distorted and restored patches to measure GoR. Eventually, the quality score of an input image is estimated by weighted sum of the patch scores. Experimental results on Waterloo Exploration, LIVE and TID2013 show the effectiveness and generalization ability of RAN compared to the state-of-the-art NR-IQA models.
DOI:
10.1609/aaai.v32i1.12258
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.