Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
AAAI Technical Track: Vision
Downloads:
Abstract:
Vehicle re-identification (re-ID) is to identify the same vehicle across different cameras. It’s a significant but challenging topic, which has received little attention due to the complex intra-class and inter-class variation of vehicle images and the lack of large-scale vehicle re-ID dataset. Previous methods focus on pulling images from different vehicles apart but neglect the discrimination between vehicles from different vehicle models, which is actually quite important to obtain a correct ranking order for vehicle re-ID. In this paper, we learn a structured feature embedding for vehicle re-ID with a novel coarse-to-fine ranking loss to pull images of the same vehicle as close as possible and achieve discrimination between images from different vehicles as well as vehicles from different vehicle models. In the learnt feature space, both intra-class compactness and inter-class distinction are well guaranteed and the Euclidean distance between features directly reflects the semantic similarity of vehicle images. Furthermore, we build so far the largest vehicle re-ID dataset "Vehicle-1M," which involves nearly 1 million images captured in various surveillance scenarios. Experimental results on "Vehicle-1M" and "VehicleID" demonstrate the superiority of our proposed approach.
DOI:
10.1609/aaai.v32i1.12237
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.