Abstract:
In this paper, we study the problem of facial attribute learning. In particular, we propose a Face Recognition guided facial Attribute classification Network, called FR-ANet. All the attributes share low-level features, while high-level features are specially learned for attribute groups. Further, to utilize the identity information, high-level features are merged to perform face identity recognition. The experimental results on CelebA and LFWA datasets demonstrate the promise of the FR-ANet.

Published Date: 2018-02-08
Registration: ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Copyright: Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.
DOI:
10.1609/aaai.v32i1.12175