
Published Date: 2018-02-08
Registration: ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Copyright: Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.
DOI:
10.1609/aaai.v32i1.12157
Abstract:
Variational encoder-decoders have shown promising results in seq2seq tasks. However, the training process is known difficult to be controlled because latent variables tend to be ignored while decoding. In this paper, we thoroughly analyze the reason behind this training difficulty, compare different ways of alleviating it and propose a new framework that helps significantly improve the overall performance.