
Published Date: 2018-02-08
Registration: ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Copyright: Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.
DOI:
10.1609/aaai.v32i1.12147
Abstract:
A wealth of information regarding intelligent decision making is conveyed by human gaze and visual attention, hence, modeling and exploiting such information might be a promising way to strengthen algorithms like deep reinforcement learning. We collect high-quality human action and gaze data while playing Atari games. Using these data, we train a deep neural network that can predict human gaze positions and visual attention with high accuracy.