Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
Student Abstract Track
Downloads:
Abstract:
In supervised approaches for keyphrase extraction, a candidate phrase is encoded with a set of hand-crafted features and machine learning algorithms are trained to discriminate keyphrases from non-keyphrases. Although the manually-designed features have shown to work well in practice, feature engineering is a difficult process that requires expert knowledge and normally does not generalize well. In this paper, we present SurfKE, a feature learning framework that exploits the text itself to automatically discover patterns that keyphrases exhibit. Our model represents the document as a graph and automatically learns feature representation of phrases. The proposed model obtains remarkable improvements in performance over strong baselines.
DOI:
10.1609/aaai.v32i1.12144
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.