Abstract:
The conditional value at risk (CVaR) is a popular risk measure which enables risk-averse decision making under uncertainty. We consider maximizing the CVaR of a continuous submodular function, an extension of submodular set functions to a continuous domain. One example application is allocating a continuous amount of energy to each sensor in a network, with the goal of detecting intrusion or contamination. Previous work allows maximization of the CVaR of a linear or concave function. Continuous submodularity represents a natural set of nonconcave functions with diminishing returns, to which existing techniques do not apply. We give a (1 - 1/e)-approximation algorithm for maximizing the CVaR of a monotone continuous submodular function. This also yields an algorithm for submodular set functions which produces a distribution over feasible sets with guaranteed CVaR. Experimental results in two sensor placement domains confirm that our algorithm substantially outperforms competitive baselines.

Published Date: 2018-02-08
Registration: ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Copyright: Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.
DOI:
10.1609/aaai.v32i1.12121