Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
Main Track: Planning and Scheduling
Downloads:
Abstract:
In this paper, we introduce the Action Schema Network (ASNet): a neural network architecture for learning generalised policies for probabilistic planning problems. By mimicking the relational structure of planning problems, ASNets are able to adopt a weight sharing scheme which allows the network to be applied to any problem from a given planning domain. This allows the cost of training the network to be amortised over all problems in that domain. Further, we propose a training method which balances exploration and supervised training on small problems to produce a policy which remains robust when evaluated on larger problems. In experiments, we show that ASNet's learning capability allows it to significantly outperform traditional non-learning planners in several challenging domains.
DOI:
10.1609/aaai.v32i1.12089
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.