Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
Main Track: NLP and Text Mining
Downloads:
Abstract:
Neural network methods have achieved great success in reviews sentiment classification. Recently, some works achieved improvement by incorporating user and product information to generate a review representation. However, in reviews, we observe that some words or sentences show strong user's preference, and some others tend to indicate product's characteristic. The two kinds of information play different roles in determining the sentiment label of a review. Therefore, it is not reasonable to encode user and product information together into one representation. In this paper, we propose a novel framework to encode user and product information. Firstly, we apply two individual hierarchical neural networks to generate two representations, with user attention or with product attention. Then, we design a combined strategy to make full use of the two representations for training and final prediction. The experimental results show that our model obviously outperforms other state-of-the-art methods on IMDB and Yelp datasets. Through the visualization of attention over words related to user or product, we validate our observation mentioned above.
DOI:
10.1609/aaai.v32i1.12054
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.