Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
Main Track: NLP and Text Mining
Downloads:
Abstract:
The current neural network models for event detection have only considered the sequential representation of sentences. Syntactic representations have not been explored in this area although they provide an effective mechanism to directly link words to their informative context for event detection in the sentences. In this work, we investigate a convolutional neural network based on dependency trees to perform event detection. We propose a novel pooling method that relies on entity mentions to aggregate the convolution vectors. The extensive experiments demonstrate the benefits of the dependency-based convolutional neural networks and the entity mention-based pooling method for event detection. We achieve the state-of-the-art performance on widely used datasets with both perfect and predicted entity mentions.
DOI:
10.1609/aaai.v32i1.12039
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.