Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
Main Track: NLP and Machine Learning
Downloads:
Abstract:
The Alexa Meaning Representation Language (AMRL) is a compositional graph-based semantic representation that includes fine-grained types, properties, actions, and roles and can represent a wide variety of spoken language. AMRL increases the ability of virtual assistants to represent more complex requests, including logical and conditional statements as well as ones with nested clauses. Due to this representational capacity, the acquisition of large scale data resources is challenging, which limits the accuracy of resulting models. This paper has two primary contributions. First, we develop a linearization of AMRL graphs along with a deep multi-task model that predicts fine-grained types, properties, and intents. Second, we show how to jointly train a model that predicts an existing representation for spoken language understanding (SLU) along with the linearized AMRL parse. The resulting model, which leverages learned embeddings from both tasks, is able to predict the AMRL representation more accurately than other approaches, decreasing the error rates in the full parse by 3.56% absolute and reducing the amount of natively annotated data needed to train accurate parsing models.
DOI:
10.1609/aaai.v32i1.12019
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.