Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
Main Track: NLP and Machine Learning
Downloads:
Abstract:
While end-to-end neural machine translation (NMT) has achieved notable success in the past years in translating a handful of resource-rich language pairs, it still suffers from the data scarcity problem for low-resource language pairs and domains. To tackle this problem, we propose an interactive multimodal framework for zero-resource neural machine translation. Instead of being passively exposed to large amounts of parallel corpora, our learners (implemented as encoder-decoder architecture) engage in cooperative image description games, and thus develop their own image captioning or neural machine translation model from the need to communicate in order to succeed at the game. Experimental results on the IAPR-TC12 and Multi30K datasets show that the proposed learning mechanism significantly improves over the state-of-the-art methods.
DOI:
10.1609/aaai.v32i1.11976
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.