Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
Main Track: NLP and Machine Learning
Downloads:
Abstract:
Reading and understanding text is one important component in computer aided diagnosis in clinical medicine, also being a major research problem in the field of NLP. In this work, we introduce a question-answering task called MedQA to study answering questions in clinical medicine using knowledge in a large-scale document collection. The aim of MedQA is to answer real-world questions with large-scale reading comprehension. We propose our solution SeaReader---a modular end-to-end reading comprehension model based on LSTM networks and dual-path attention architecture. The novel dual-path attention models information flow from two perspectives and has the ability to simultaneously read individual documents and integrate information across multiple documents. In experiments our SeaReader achieved a large increase in accuracy on MedQA over competing models. Additionally, we develop a series of novel techniques to demonstrate the interpretation of the question answering process in SeaReader.
DOI:
10.1609/aaai.v32i1.11970
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.