Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
Main Track: NLP and Machine Learning
Downloads:
Abstract:
Semantic dependency graph has been recently proposed as an extension of tree-structured syntactic or semantic representation for natural language sentences. It particularly features the structural property of multi-head, which allows nodes to have multiple heads, resulting in a directed acyclic graph(DAG) parsing problem. Yet most statistical parsers focused exclusively on shallow bi-lexical tree structures, DAG parsing remains under-explored. In this paper, we propose a neural transition-based parser, using a variant of list-based arc-eager transition algorithm for dependency graph parsing. Particularly, two non-trivial improvements are proposed for representing the key components of the transition system, to better capture the semantics of segments and internal sub-graph structures. We test our parser on the SemEval-2016 Task 9 dataset (Chinese) and the SemEval-2015 Task 18 dataset (English). On both benchmark datasets, we obtain superior or comparable results to the best performing systems. Our parser can be further improved with a simple ensemble mechanism, resulting in the state-of-the-art performance.
DOI:
10.1609/aaai.v32i1.11968
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.