Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
Main Track: NLP and Knowledge Representation
Downloads:
Abstract:
Context-based word embedding learning approaches can model rich semantic and syntactic information. However, it is problematic for sentiment analysis because the words with similar contexts but opposite sentiment polarities, such as good and bad, are mapped into close word vectors in the embedding space. Recently, some sentiment embedding learning methods have been proposed, but most of them are designed to work well on sentence-level texts. Directly applying those models to document-level texts often leads to unsatisfied results. To address this issue, we present a sentiment-specific word embedding learning architecture that utilizes local context informationas well as global sentiment representation. The architecture is applicable for both sentence-level and document-level texts. We take global sentiment representation as a simple average of word embeddings in the text, and use a corruption strategy as a sentiment-dependent regularization. Extensive experiments conducted on several benchmark datasets demonstrate that the proposed architecture outperforms the state-of-the-art methods for sentiment classification.
DOI:
10.1609/aaai.v32i1.11916
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.