Published:
2020-06-02
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 34
Volume
Issue:
Vol. 34 No. 07: AAAI-20 Technical Tracks 7
Track:
AAAI Technical Track: Vision
Downloads:
Abstract:
This paper proposes a novel algorithm which learns a formal regular grammar from real-world continuous data, such as videos. Learning latent terminals, non-terminals, and production rules directly from continuous data allows the construction of a generative model capturing sequential structures with multiple possibilities. Our model is fully differentiable, and provides easily interpretable results which are important in order to understand the learned structures. It outperforms the state-of-the-art on several challenging datasets and is more accurate for forecasting future activities in videos. We plan to open-source the code.1
DOI:
10.1609/aaai.v34i07.6861
AAAI
Vol. 34 No. 07: AAAI-20 Technical Tracks 7
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print) ISBN 978-1-57735-835-0 (10 issue set)
Published by AAAI Press, Palo Alto, California USA Copyright © 2020, Association for the Advancement of Artificial Intelligence All Rights Reserved