Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
Main Track: Machine Learning Applications
Downloads:
Abstract:
In recent years, skeleton based action recognition is becoming an increasingly attractive alternative to existing video-based approaches, beneficial from its robust and comprehensive 3D information. In this paper, we explore an unsupervised representation learning approach for the first time to capture the long-term global motion dynamics in skeleton sequences. We design a conditional skeleton inpainting architecture for learning a fixed-dimensional representation, guided by additional adversarial training strategies. We quantitatively evaluate the effectiveness of our learning approach on three well-established action recognition datasets. Experimental results show that our learned representation is discriminative for classifying actions and can substantially reduce the sequence inpainting errors.
DOI:
10.1609/aaai.v32i1.11853
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.