Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
Main Track: Machine Learning Applications
Downloads:
Abstract:
We propose a tensor-based approach to analyze multi-dimensional data describing sample subjects. It simultaneously discovers patterns in features and reveals past temporal points that have impact on current outcomes. The model coefficient, a k-mode tensor, is decomposed into a summation of k tensors of the same dimension. To accomplish feature selection, we introduce the tensor '"atent LF,1 norm" as a grouped penalty in our formulation. Furthermore, the proposed model takes into account within-subject correlations by developing a tensor-based quadratic inference function. We provide an asymptotic analysis of our model when the sample size approaches to infinity. To solve the corresponding optimization problem, we develop a linearized block coordinate descent algorithm and prove its convergence for a fixed sample size. Computational results on synthetic datasets and real-file fMRI and EEG problems demonstrate the superior performance of the proposed approach over existing techniques.
DOI:
10.1609/aaai.v32i1.11845
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.