• Skip to main content
  • Skip to primary sidebar
AAAI

AAAI

Association for the Advancement of Artificial Intelligence

    • AAAI

      AAAI

      Association for the Advancement of Artificial Intelligence

  • About AAAIAbout AAAI
    • AAAI Officers and Committees
    • AAAI Staff
    • Bylaws of AAAI
    • AAAI Awards
      • Fellows Program
      • Classic Paper Award
      • Dissertation Award
      • Distinguished Service Award
      • Allen Newell Award
      • Outstanding Paper Award
      • Award for Artificial Intelligence for the Benefit of Humanity
      • Feigenbaum Prize
      • Patrick Henry Winston Outstanding Educator Award
      • Engelmore Award
      • AAAI ISEF Awards
      • Senior Member Status
      • Conference Awards
    • AAAI Resources
    • AAAI Mailing Lists
    • Past AAAI Presidential Addresses
    • Presidential Panel on Long-Term AI Futures
    • Past AAAI Policy Reports
      • A Report to ARPA on Twenty-First Century Intelligent Systems
      • The Role of Intelligent Systems in the National Information Infrastructure
    • AAAI Logos
    • News
  • aaai-icon_ethics-diversity-line-yellowEthics & Diversity
  • Conference talk bubbleConferences & Symposia
    • AAAI Conference
    • AIES AAAI/ACM
    • AIIDE
    • IAAI
    • ICWSM
    • HCOMP
    • Spring Symposia
    • Summer Symposia
    • Fall Symposia
    • Code of Conduct for Conferences and Events
  • PublicationsPublications
    • AAAI Press
    • AI Magazine
    • Conference Proceedings
    • AAAI Publication Policies & Guidelines
    • Request to Reproduce Copyrighted Materials
  • aaai-icon_ai-magazine-line-yellowAI Magazine
    • Issues and Articles
    • Author Guidelines
    • Editorial Focus
  • MembershipMembership
    • Member Login
    • Developing Country List
    • AAAI Chapter Program

  • Career CenterCareer Center
  • aaai-icon_ai-topics-line-yellowAITopics
  • aaai-icon_contact-line-yellowContact

Home / Proceedings / Proceedings of the AAAI Conference on Artificial Intelligence, 32

Compatibility Family Learning for Item Recommendation and Generation

March 15, 2023

Download PDF

Published Date: 2018-02-08

Registration: ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)

Copyright: Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.

Authors

Yong-Siang Shih

Appier Inc.


Kai-Yueh Chang

Appier Inc.


Hsuan-Tien Lin

Appier Inc.


Min Sun

National Tsing Hua University


DOI:

10.1609/aaai.v32i1.11839


Abstract:

Compatibility between items, such as clothes and shoes, is a major factor among customer's purchasing decisions. However, learning "compatibility" is challenging due to (1) broader notions of compatibility than those of similarity, (2) the asymmetric nature of compatibility, and (3) only a small set of compatible and incompatible items are observed. We propose an end-to-end trainable system to embed each item into a latent vector and project a query item into K compatible prototypes in the same space. These prototypes reflect the broad notions of compatibility. We refer to both the embedding and prototypes as "Compatibility Family." In our learned space, we introduce a novel Projected Compatibility Distance (PCD) function which is differentiable and ensures diversity by aiming for at least one prototype to be close to a compatible item, whereas none of the prototypes are close to an incompatible item. We evaluate our system on a toy dataset, two Amazon product datasets, and Polyvore outfit dataset. Our method consistently achieves state-of-the-art performance. Finally, we show that we can visualize the candidate compatible prototypes using a Metric-regularized Conditional Generative Adversarial Network (MrCGAN), where the input is a projected prototype and the output is a generated image of a compatible item. We ask human evaluators to judge the relative compatibility between our generated images and images generated by CGANs conditioned directly on query items. Our generated images are significantly preferred, with roughly twice the number of votes as others.

Topics: AAAI

Primary Sidebar

HOW TO CITE:

Yong-Siang Shih||Kai-Yueh Chang||Hsuan-Tien Lin||Min Sun Compatibility Family Learning for Item Recommendation and Generation Proceedings of the AAAI Conference on Artificial Intelligence, 32 (2018) .

Yong-Siang Shih||Kai-Yueh Chang||Hsuan-Tien Lin||Min Sun Compatibility Family Learning for Item Recommendation and Generation AAAI 2018, .

Yong-Siang Shih||Kai-Yueh Chang||Hsuan-Tien Lin||Min Sun (2018). Compatibility Family Learning for Item Recommendation and Generation. Proceedings of the AAAI Conference on Artificial Intelligence, 32, .

Yong-Siang Shih||Kai-Yueh Chang||Hsuan-Tien Lin||Min Sun. Compatibility Family Learning for Item Recommendation and Generation. Proceedings of the AAAI Conference on Artificial Intelligence, 32 2018 p..

Yong-Siang Shih||Kai-Yueh Chang||Hsuan-Tien Lin||Min Sun. 2018. Compatibility Family Learning for Item Recommendation and Generation. "Proceedings of the AAAI Conference on Artificial Intelligence, 32". .

Yong-Siang Shih||Kai-Yueh Chang||Hsuan-Tien Lin||Min Sun. (2018) "Compatibility Family Learning for Item Recommendation and Generation", Proceedings of the AAAI Conference on Artificial Intelligence, 32, p.

Yong-Siang Shih||Kai-Yueh Chang||Hsuan-Tien Lin||Min Sun, "Compatibility Family Learning for Item Recommendation and Generation", AAAI, p., 2018.

Yong-Siang Shih||Kai-Yueh Chang||Hsuan-Tien Lin||Min Sun. "Compatibility Family Learning for Item Recommendation and Generation". Proceedings of the AAAI Conference on Artificial Intelligence, 32, 2018, p..

Yong-Siang Shih||Kai-Yueh Chang||Hsuan-Tien Lin||Min Sun. "Compatibility Family Learning for Item Recommendation and Generation". Proceedings of the AAAI Conference on Artificial Intelligence, 32, (2018): .

Yong-Siang Shih||Kai-Yueh Chang||Hsuan-Tien Lin||Min Sun. Compatibility Family Learning for Item Recommendation and Generation. AAAI[Internet]. 2018[cited 2023]; .


ISSN: 2374-3468


Published by AAAI Press, Palo Alto, California USA
Copyright 2022, Association for the Advancement of
Artificial Intelligence 1900 Embarcadero Road, Suite
101, Palo Alto, California 94303 All Rights Reserved

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT