Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
AAAI Technical Track: Machine Learning
Downloads:
Abstract:
Recent work has shown that temporally extended actions (options) can be learned fully end-to-end as opposed to being specified in advance. While the problem of how to learn options is increasingly well understood, the question of what good options should be has remained elusive. We formulate our answer to what good options should be in the bounded rationality framework (Simon, 1957) through the notion of deliberation cost. We then derive practical gradient-based learning algorithms to implement this objective. Our results in the Arcade Learning Environment (ALE) show increased performance and interpretability.
DOI:
10.1609/aaai.v32i1.11831
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.