Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
AAAI Technical Track: Machine Learning
Downloads:
Abstract:
Recently, binary hashing has been widely applied to data compression, ranking and nearest-neighbor search. Although some promising results have been achieved, effectively optimizing sign function related objectives is still highly challenging and thus pseudo-labels are inevitably used. In this paper, we propose a novel general framework to simultaneously minimize the measurement distortion and the quantization loss, which enable to learn hash functions directly without requiring the pseudo-labels. More significantly, a novel W-Shape Loss (WSL) is specifically developed for hashing so that both the two separate steps of relaxation and the NP-hard discrete optimization are successfully discarded. The experimental results demonstrate that the retrieval performance both in uni-modal and cross-modal settings can be improved.
DOI:
10.1609/aaai.v32i1.11675
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.