Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
AAAI Technical Track: Machine Learning
Downloads:
Abstract:
Network quantization is an effective solution to compress deep neural networks for practical usage. Existing network quantization methods cannot sufficiently exploit the depth information to generate low-bit compressed network. In this paper, we propose two novel network quantization approaches, single-level network quantization (SLQ) for high-bit quantization and multi-level network quantization (MLQ) for extremely low-bit quantization (ternary). We are the first to consider the network quantization from both width and depth level. In the width level, parameters are divided into two parts: one for quantization and the other for re-training to eliminate the quantization loss. SLQ leverages the distribution of the parameters to improve the width level. In the depth level, we introduce incremental layer compensation to quantize layers iteratively which decreases the quantization loss in each iteration. The proposed approaches are validated with extensive experiments based on the state-of-the-art neural networks including AlexNet, VGG-16, GoogleNet and ResNet-18. Both SLQ and MLQ achieve impressive results.
DOI:
10.1609/aaai.v32i1.11663
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.