Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
AAAI Technical Track: Machine Learning
Downloads:
Abstract:
In this paper, we consider the interpretability of the foundational Laplacian-based semi-supervised learning approaches on graphs. We introduce a novel flow-based learning framework that subsumes the foundational approaches and additionally provides a detailed, transparent, and easily understood expression of the learning process in terms of graph flows. As a result, one can visualize and interactively explore the precise subgraph along which the information from labeled nodes flows to an unlabeled node of interest. Surprisingly, the proposed framework avoids trading accuracy for interpretability, but in fact leads to improved prediction accuracy, which is supported both by theoretical considerations and empirical results. The flow-based framework guarantees the maximum principle by construction and can handle directed graphs in an out-of-the-box manner.
DOI:
10.1609/aaai.v32i1.11647
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.