Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
AAAI Technical Track: Machine Learning
Downloads:
Abstract:
This paper provides a theoretical insight for the integration of logical constraints into a learning process. In particular it is proved that a fragment of the Łukasiewicz logic yields a set of convex constraints. The fragment is enough expressive to include many formulas of interest such as Horn clauses. Using the isomorphism of Łukasiewicz formulas and McNaughton functions, logical constraints are mapped to a set of linear constraints once the predicates are grounded on a given sample set. In this framework, it is shown how a collective classification scheme can be formulated as a quadratic programming problem, but the presented theory can be exploited in general to embed logical constraints into a learning process. The proposed approach is evaluated on a classification task to show how the use of the logical rules can be effective to improve the accuracy of a trained classifier.
DOI:
10.1609/aaai.v32i1.11640
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.