Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
AAAI Technical Track: Machine Learning
Downloads:
Abstract:
Domain shift refers to the well known problem that a model trained in one source domain performs poorly when appliedto a target domain with different statistics. Domain Generalization (DG) techniques attempt to alleviate this issue by producing models which by design generalize well to novel testing domains. We propose a novel meta-learning method for domain generalization. Rather than designing a specific model that is robust to domain shift as in most previous DG work, we propose a model agnostic training procedure for DG. Our algorithm simulates train/test domain shift during training by synthesizing virtual testing domains within each mini-batch. The meta-optimization objective requires that steps to improve training domain performance should also improve testing domain performance. This meta-learning procedure trains models with good generalization ability to novel domains. We evaluate our method and achieve state of the art results on a recent cross-domain image classification benchmark, as well demonstrating its potential on two classic reinforcement learning tasks.
DOI:
10.1609/aaai.v32i1.11596
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.