Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
AAAI Technical Track: Knowledge Representation and Reasoning
Downloads:
Abstract:
Knowledge representation learning aims at modeling knowledge graph by encoding entities and relations into a low dimensional space. Most of the traditional works for knowledge embedding need negative sampling to minimize a margin-based ranking loss. However, those works construct negative samples through a random mode, by which the samples are often too trivial to fit the model efficiently. In this paper, we propose a novel knowledge representation learning framework based on Generative Adversarial Networks (GAN). In this GAN-based framework, we take advantage of a generator to obtain high-quality negative samples. Meanwhile, the discriminator in GAN learns the embeddings of the entities and relations in knowledge graph. Thus, we can incorporate the proposed GAN-based framework into various traditional models to improve the ability of knowledge representation learning. Experimental results show that our proposed GAN-based framework outperforms baselines on triplets classification and link prediction tasks.
DOI:
10.1609/aaai.v32i1.11536
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.