Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
AAAI Technical Track: Heuristic Search and Optimization
Downloads:
Abstract:
Derivative-free optimization has shown advantage in solving sophisticated problems such as policy search, when the environment is noise-free. Many real-world environments are noisy, where solution evaluations are inaccurate due to the noise. Noisy evaluation can badly injure derivative-free optimization, as it may make a worse solution looks better. Sampling is a straightforward way to reduce noise, while previous studies have shown that delay the noise handling to the comparison time point (i.e., threshold selection) can be helpful for derivative-free optimization. This work further delays the noise handling, and proposes a simple noise handling mechanism, i.e., value suppression. By value suppression, we do nothing about noise until the best-so-far solution has not been improved for a period, and then suppress the value of the best-so-far solution and continue the optimization. On synthetic problems as well as reinforcement learning tasks, experiments verify that value suppression can be significantly more effective than the previous methods.
DOI:
10.1609/aaai.v32i1.11534
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.