Proceedings:
No. 13: AAAI-21 Technical Tracks 13
Volume
Issue:
Proceedings of the AAAI Conference on Artificial Intelligence, 35
Track:
AAAI Technical Track on Philosophy and Ethics of AI
Downloads:
Abstract:
Organizations that collect and sell data face increasing scrutiny for the discriminatory use of data. We propose a novel unsupervised approach to map data into a compressed binary representation independent of sensitive attributes. We show that in an information bottleneck framework, a parsimonious representation should filter out information related to sensitive attributes if they are provided directly to the decoder. Empirical results show that the method achieves state-of-the-art accuracy-fairness trade-off and that explicit control of the entropy of the representation bit stream allows the user to move smoothly and simultaneously along both rate-distortion and rate-fairness curves.
DOI:
10.1609/aaai.v35i13.17370
AAAI
Proceedings of the AAAI Conference on Artificial Intelligence, 35