Abstract:
We propose a novel mechanism for solving the assignment problem when we have a two sided matching problem with preferences from one side (the agents/reviewers) over the other side (the objects/papers) and both sides have capacity constraints. The assignment problem is a fundamental in both computer science and economics with application in many areas including task and resource allocation. Drawing inspiration from work in multi-criteria decision making and social choice theory we use order weighted averages (OWAs), a parameterized class of mean aggregators, to propose a novel and flexible class of algorithms for the assignment problem. We show an algorithm for finding an SUM-OWA assignment in polynomial time, in contrast to the NP-hardness of finding an egalitarian assignment. We demonstrate through empirical experiments that using SUM-OWA assignments can lead to high quality and more fair assignments.

Published Date: 2018-02-08
Registration: ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Copyright: Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.
DOI:
10.1609/aaai.v32i1.11484