Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
AAAI Technical Track: Game Theory and Economic Paradigms
Downloads:
Abstract:
The classic bribery problem is to find a minimal subset of voters who need to change their vote to make some preferred candidate win.We find an approximate solution for this problem for a broad family of scoring rules (which includes Borda and t-approval), in the following sense: if there is a strategy which requires bribing k voters, we efficiently find a strategy which requires bribing at most k + Õ(√k) voters. Our algorithm is based on a randomized reduction from bribery to coalitional manipulation (UCM). To solve the UCM problem, we apply the Birkhoff-von Neumann (BvN) decomposition to a fractional manipulation matrix. This allows us to limit the size of the possible ballot search space reducing it from exponential to polynomial, while still obtaining good approximation guarantees. Finding the optimal solution in the truncated search space yields a new algorithm for UCM, which is of independent interest.
DOI:
10.1609/aaai.v32i1.11476
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.