Published:
2018-02-08
Proceedings:
Proceedings of the AAAI Conference on Artificial Intelligence, 32
Volume
Issue:
Thirty-Second AAAI Conference on Artificial Intelligence 2018
Track:
AAAI Technical Track: Game Theory and Economic Paradigms
Downloads:
Abstract:
The winner determination problems of many attractive multi-winner voting rules are NP-complete. However, they often admit polynomial-time algorithms when restricting inputs to be single-peaked. Commonly, such algorithms employ dynamic programming along the underlying axis. We introduce a new technique: carefully chosen integer linear programming (IP) formulations for certain voting problems admit an LP relaxation which is totally unimodular if preferences are single-peaked, and which thus admits an integral optimal solution. This technique gives efficient algorithms for finding optimal committees under Proportional Approval Voting (PAV) and the Chamberlin-Courant rule with single-peaked preferences, as well as for certain OWA-based rules. For PAV, this is the first technique able to efficiently find an optimal committee when preferences are single-peaked. An advantage of our approach is that no special-purpose algorithm needs to be used to exploit structure in the input preferences: any standard IP solver will terminate in the first iteration if the input is single-peaked, and will continue to work otherwise.
DOI:
10.1609/aaai.v32i1.11460
AAAI
Thirty-Second AAAI Conference on Artificial Intelligence 2018
ISSN 2374-3468 (Online) ISSN 2159-5399 (Print)
Published by AAAI Press, Palo Alto, California USA Copyright © 2018, Association for the Advancement of Artificial Intelligence All Rights Reserved.